手机处理器的arm(功能最弱的arm处理器)

AquArius 教程 30

手机处理器的arm

ARM-Advanced RISC Machines
ARM(Advanced RISC Machines),既可以认为是一个公司的名字,也可以认为是对一类微处理器的通称,还可以认为是一种技术的名字。
1991年ARM公司成立于英国剑桥,主要出售芯片设计技术的授权。目前,采用ARM技术知识产权(IP)核的微处理器,即我们通常所说的ARM微处理器,已遍及工业控制、消费类电子产品、通信系统、 *** 系统、无线系统等各类产品市场,基于ARM技术的微处理器应用约占据了32位RISC微处理器75%以上的市场份额,ARM技术正在逐步渗入到我们生活的各个方面。
ARM公司是专门从事基于RISC技术芯片设计开发的公司,作为知识产权供应商,本身不直接从事芯片生产,靠 *** 设计许可由合作公司生产各具特色的芯片,世界各大半导体生产商从ARM公司购买其设计的ARM微处理器核,根据各自不同的应用领域,加入适当的外围电路,从而形成自己的ARM微处理器芯片进入市场。目前,全世界有几十家大的半导体公司都使用ARM公司的授权,因此既使得ARM技术获得更多的第三方工具、制造、软件的支持,又使整个系统成本降低,使产品更容易进入市场被消费者所接受,更具有竞争力。 1.2.1 ARM微处理器的应用领域
到目前为止,ARM微处理器及技术的应用几乎已经深入到各个领域:
1、工业控制领域:作为32的RISC架构,基于ARM核的微控制器芯片不但占据了高端微控制器市场的大部分市场份额,同时也逐渐向低端微控制器应用领域扩展,ARM微控制器的低功耗、高性价比,向传统的8位/16位微控制器提出了挑战。
2、无线通讯领域:目前已有超过85%的无线通讯设备采用了ARM技术, ARM以其高性能和低成本,在该领域的地位日益巩固。
3、 *** 应用:随着宽带技术的推广,采用ARM技术的ADSL芯片正逐步获得竞争优势。此外,ARM在语音及视频处理上行了优化,并获得广泛支持,也对DSP的应用领域提出了挑战。
4、消费类电子产品:ARM技术在目前流行的数字音频播放器、数字机顶盒和游戏机中得到广泛采用。
5、成像和安全产品:现在流行的数码相机和打印机中绝大部分采用ARM技术。手机中的32位SIM智能卡也采用了ARM技术。
除此以外,ARM微处理器及技术还应用到许多不同的领域,并会在将来取得更加广泛的应用。
1.2.2 ARM微处理器的特点
采用RISC架构的ARM微处理器一般具有如下特点:
1、体积小、低功耗、低成本、高性能;
2、支持Thumb(16位)/ARM(32位)双指令集,能很好的兼容8位/16位器件;
3、大量使用寄存器,指令执行速度更快;
4、大多数数据操作都在寄存器中完成;
5、寻址方式灵活简单,执行效率高;
6、指令长度固定; ARM微处理器目前包括下面几个系列,以及其它厂商基于ARM体系结构的处理器,除了具有ARM体系结构的共同特点以外,每一个系列的ARM微处理器都有各自的特点和应用领域。
- ARM7系列
- ARM9系列
- ARM9E系列
- ARM10E系列
- SecurCore系列
- Inter的Xscale
- Inter的StrongARM
其中,ARM7、ARM9、ARM9E和ARM10为4个通用处理器系列,每一个系列提供一套相对独特的性能来满足不同应用领域的需求。SecurCore系列专门为安全要求较高的应用而设计。
以下我们来详细了解一下各种处理器的特点及应用领域。
1.3.1 ARM7微处理器系列
ARM7系列微处理器为低功耗的32位RISC处理器,最适合用于对价位和功耗要求较高的消费类应用。ARM7微处理器系列具有如下特点:
- 具有嵌入式ICE-RT逻辑,调试开发方便。
- 极低的功耗,适合对功耗要求较高的应用,如便携式产品。
- 能够提供0.9MIPS/MHz的三级流水线结构。
- 代码密度高并兼容16位的Thumb指令集。
- 对操作系统的支持广泛,包括Windows CE、Linux、Palm OS等。
- 指令系统与ARM9系列、ARM9E系列和ARM10E系列兼容,便于用户的产品升级换代。
- 主频更高可达130MIPS,高速的运算处理能力能胜任绝大多数的复杂应用。
ARM7系列微处理器的主要应用领域为:工业控制、Internet设备、 *** 和调制解调器设备、移动 *** 等多种多媒体和嵌入式应用。
ARM7系列微处理器包括如下几种类型的核:ARM7TDMI、ARM7TDMI-S、
ARM720T、ARM7EJ。其中,ARM7TMDI是目前使用最广泛的32位嵌入式RISC处理器,属低端ARM处理器核。TDMI的基本含义为:
T: 支持16为压缩指令集Thumb;
D: 支持片上Debug;
M:内嵌硬件乘法器(Multiplier)
I: 嵌入式ICE,支持片上断点和调试点;
1.3.2 ARM9微处理器系列
ARM9系列微处理器在高性能和低功耗特性方面提供更佳的性能。具有以下特点:
- 5级整数流水线,指令执行效率更高。
- 提供1.1MIPS/MHz的哈佛结构。
- 支持32位ARM指令集和16位Thumb指令集。
- 支持32位的高速AMBA总线接口。
嵌入式操作系统。
- MPU支持实时操作系统。
- 支持数据Cache和指令Cache,具有更高的指令和数据处理能力。
ARM9系列微处理器主要应用于无线设备、仪器仪表、安全系统、机顶盒、高端打印机、数字照相机和数字摄像机等。
ARM9系列微处理器包含ARM920T、ARM922T和ARM940T三种类型,以适用于不同的应用场合。
1.3.3 ARM9E微处理器系列
ARM9E系列微处理器为可综合处理器,使用单一的处理器内核提供了微控制器、DSP、Java应用系统的解决方案,极大的减少了芯片的面积和系统的复杂程度。ARM9E系列微处理器提供了增强的DSP处理能力,很适合于那些需要同时使用DSP和微控制器的应用场合。
ARM9E系列微处理器的主要特点如下:
- 支持DSP指令集,适合于需要高速数字信号处理的场合。
- 5级整数流水线,指令执行效率更高。
- 支持32位ARM指令集和16位Thumb指令集。
- 支持32位的高速AMBA总线接口。
- 支持VFP9浮点处理协处理器。
- MPU支持实时操作系统。
- 支持数据Cache和指令Cache,具有更高的指令和数据处理能力。
- 主频更高可达300MIPS。
ARM9系列微处理器主要应用于下一代无线设备、数字消费品、成像设备、工业控制、存储设备和 *** 设备等领域。
ARM9E系列微处理器包含ARM926EJ-S、ARM946E-S和ARM966E-S三种类型,以适用于不同的应用场合。
1.3.4 ARM10E微处理器系列
ARM10E系列微处理器具有高性能、低功耗的特点,由于采用了新的体系结构,与同等的ARM9器件相比较,在同样的时钟频率下,性能提高了近50%,同时,ARM10E系列微处理器采用了两种先进的节能方式,使其功耗极低。
ARM10E系列微处理器的主要特点如下:
- 支持DSP指令集,适合于需要高速数字信号处理的场合。
- 6级整数流水线,指令执行效率更高。
- 支持32位ARM指令集和16位Thumb指令集。
- 支持32位的高速AMBA总线接口。
- 支持VFP10浮点处理协处理器。
- 全性能的MMU,支持Windows CE、Linux、Palm OS等多种主流嵌入式操作系统。
- 支持数据Cache和指令Cache,具有更高的指令和数据处理能力
- 主频更高可达400MIPS。
- 内嵌并行读/写操作部件。
ARM10E系列微处理器主要应用于下一代无线设备、数字消费品、成像设备、工业控制、通信和信息系统等领域。
ARM10E系列微处理器包含ARM1020E、ARM1022E和ARM1026EJ-S三种类型,以适用于不同的应用场合。
1.3.5 SecurCore微处理器系列
SecurCore系列微处理器专为安全需要而设计,提供了完善的32位RISC技术的安全解决方案,因此,SecurCore系列微处理器除了具有ARM体系结构的低功耗、高性能的特点外,还具有其独特的优势,即提供了对安全解决方案的支持。
SecurCore系列微处理器除了具有ARM体系结构各种主要特点外,还在系统安全方面具有如下的特点:
- 带有灵活的保护单元,以确保操作系统和应用数据的安全。
- 采用软内核技术,防止外部对其进行扫描探测。
- 可集成用户自己的安全特性和其他协处理器。
SecurCore系列微处理器主要应用于一些对安全性要求较高的应用产品及应用系统,如电子商务、电子政务、电子银行业务、 *** 和认证系统等领域。
SecurCore系列微处理器包含SecurCore SC100、SecurCore SC110、SecurCore SC200和SecurCore SC210四种类型,以适用于不同的应用场合。
1.3.6 StrongARM微处理器系列
Inter StrongARM SA-1100处理器是采用ARM体系结构高度集成的32位RISC微处理器。它融合了Inter公司的设计和处理技术以及ARM体系结构的电源效率,采用在软件上兼容ARMv4体系结构、同时采用具有Intel技术优点的体系结构。
Intel StrongARM处理器是便携式通讯产品和消费类电子产品的理想选择,已成功应用于多家公司的掌上电脑系列产品。
1.3.7 Xscale处理器
Xscale 处理器是基于ARMv5TE体系结构的解决方案,是一款全性能、高性价比、低功耗的处理器。它支持16位的Thumb指令和DSP指令集,已使用在数字移动 *** 、个人数字助理和 *** 产品等场合。
Xscale 处理器是Inter目前主要推广的一款ARM微处理器。 1.4.1 RISC体系结构
传统的CISC(Complex Instruction Set Computer,复杂指令集计算机)结构有其固有的缺点,即随着计算机技术的发展而不断引入新的复杂的指令集,为支持这些新增的指令,计算机的体系结构会越来越复杂,然而,在CISC指令集的各种指令中,其使用频率却相差悬殊,大约有20%的指令会被反复使用,占整个程序代码的80%。而余下的80%的指令却不经常使用,在程序设计中只占20%,显然,这种结构是不太合理的。
基于以上的不合理性,1979年美国加州大学伯克利分校提出了RISC(Reduced Instruction Set Computer,精简指令集计算机)的概念,RISC并非只是简单地去减少指令,而是把着眼点放在了如何使计算机的结构更加简单合理地提高运算速度上。RISC结构优先选取使用频更高的简单指令,避免复杂指令;将指令长度固定,指令格式和寻址方式种类减少;以控制逻辑为主,不用或少用微码控制等措施来达到上述目的。
到目前为止,RISC体系结构也还没有严格的定义,一般认为,RISC体系结构应具有如下特点:
- 采用固定长度的指令格式,指令归整、简单、基本寻址方式有2~3种。
- 使用单周期指令,便于流水线操作执行。
- 大量使用寄存器,数据处理指令只对寄存器进行操作,只有加载/ 存储指令可以访问存储器,以提高指令的执行效率。
除此以外,ARM体系结构还采用了一些特别的技术,在保证高性能的前提下尽量缩小芯片的面积,并降低功耗:
- 所有的指令都可根据前面的执行结果决定是否被执行,从而提高指令的执行效率。
- 可用加载/存储指令批量传输数据,以提高数据的传输效率。
- 可在一条数据处理指令中同时完成逻辑处理和移位处理。
- 在循环处理中使用地址的自动增减来提高运行效率。
当然,和CISC架构相比较,尽管RISC架构有上述的优点,但决不能认为RISC架构就可以取代CISC架构,事实上,RISC和CISC各有优势,而且界限并不那么明显。现代的CPU往往采用CISC的外围,内部加入了RISC的特性,如超长指令集CPU就是融合了RISC和CISC的优势,成为未来的CPU发展方向之一。
1.4.2 ARM微处理器的寄存器结构
ARM处理器共有37个寄存器,被分为若干个组(BANK),这些寄存器包括:
- 31个通用寄存器,包括程序计数器(PC指针),均为32位的寄存器。
- 6个状态寄存器,用以标识CPU的工作状态及程序的运行状态,均为32位,目前只使用了其中的一部分。
同时,ARM处理器又有7种不同的处理器模式,在每一种处理器模式下均有一组相应的寄存器与之对应。即在任意一种处理器模式下,可访问的寄存器包括15个通用寄存器(R0~R14)、一至二个状态寄存器和程序计数器。在所有的寄存器中,有些是在7种处理器模式下共用的同一个物理寄存器,而有些寄存器则是在不同的处理器模式下有不同的物理寄存器。
关于ARM处理器的寄存器结构,在后面的相关章节将会详细描述。
1.4.3 ARM微处理器的指令结构
ARM微处理器的在较新的体系结构中支持两种指令集:ARM指令集和Thumb指令集。其中,ARM指令为32位的长度,Thumb指令为16位长度。Thumb指令集为ARM指令集的功能子集,但与等价的ARM代码相比较,可节省30%~40%以上的存储空间,同时具备32位代码的所有优点。
关于ARM处理器的指令结构,在后面的相关章节将会详细描述。 鉴于ARM微处理器的众多优点,随着国内外嵌入式应用领域的逐步发展,ARM微处理器必然会获得广泛的重视和应用。但是,由于ARM微处理器有多达十几种的内核结构,几十个芯片生产厂家,以及千变万化的内部功能配置组合,给开发人员在选择方案时带来一定的困难,所以,对ARM芯片做一些对比研究是十分必要的。
以下从应用的角度出发,对在选择ARM微处理器时所应考虑的主要问题做一些简要的探讨。
ARM微处理器内核的选择
从前面所介绍的内容可知,ARM微处理器包含一系列的内核结构,以适应不同的应用领域,用户如果希望使用WinCE或标准Linux等操作系统以减少软件开发时间,就需要选择ARM720T以上带有MMU(Memory Management Unit)功能的ARM芯片,ARM720T、ARM920T、ARM922T、ARM946T、Strong-ARM都带有MMU功能。而ARM7TDMI则没有MMU,不支持Windows CE和标准Linux,但目前有uCLinux等不需要MMU支持的操作系统可运行于ARM7TDMI硬件平台之上。事实上,uCLinux已经成功移植到多种不带MMU的微处理器平台上,并在稳定性和其他方面都有上佳表现。
本书所讨论的S3C4510B即为一款不带MMU的ARM微处理器,可在其上运行uCLinux操作系统。
系统的工作频率
系统的工作频率在很大程度上决定了ARM微处理器的处理能力。ARM7系列微处理器的典型处理速度为0.9MIPS/MHz,常见的ARM7芯片系统主时钟为20MHz-133MHz,ARM9系列微处理器的典型处理速度为1.1MIPS/MHz,常见的ARM9的系统主时钟频率为100MHz-233MHz,ARM10更高可以达到700MHz。不同芯片对时钟的处理不同,有的芯片只需要一个主时钟频率,有的芯片内部时钟控制器可以分别为ARM核和USB、UART、DSP、音频等功能部件提供不同频率的时钟。
芯片内存储器的容量
大多数的ARM微处理器片内存储器的容量都不太大,需要用户在设计系统时外扩存储器,但也有部分芯片具有相对较大的片内存储空间,如ATMEL的AT91F40162就具有高达2MB的片内程序存储空间,用户在设计时可考虑选用这种类型,以简化系统的设计。
片内外围电路的选择
除ARM微处理器核以外,几乎所有的ARM芯片均根据各自不同的应用领域,扩展了相关功能模块,并集成在芯片之中,我们称之为片内外围电路,如USB接口、IIS接口、LCD控制器、键盘接口、RTC、ADC和DAC、DSP协处理器等,设计者应分析系统的需求,尽可能采用片内外围电路完成所需的功能,这样既可简化系统的设计,同时提高系统的可靠性。

手机处理器的arm(功能最弱的arm处理器)-第1张图片-科技快讯

功能最弱的arm处理器

Arm处理器大致可以分为Classic、Cortex-M、Cortex-R以及Cortex-A三个系列,其性能天梯图如下,Classic 系列处理器在很大程度上已经逐步被 Cortex 系列所取代
ARM Classic(传统)系列处理器
ARM7 系列:基于 ARMv3 或 ARMv4 架构,包括 ARM7TDMI-S 和 ARM7EJ-S 处理器。
ARM9 系列:基于 ARMv5 架构,包括 ARM926EJ-S、ARM946E-S 和 ARM968E-S 处理器。
ARM11 系列:基于 ARMv6 架构,包括 ARM1136J(F)-S、ARM1156T2(F)-S、ARM1176JZ(F)-S 和 ARM11MPCore 处理器。
ARM Cortex-M系列处理器
 ARM Cortex-M 系列处理器常见的包括 Cortex-M0、Cortex-M0+、Cortex-M3、Cortex-M4、Cortex-M7

Cortex-M0 是最小的 ARM 处理器,8/16 位应用,体积极小、能耗很低且编程所需要的代码占用量极少,常见的Cortex-M0 处理器有 NXP 的 LPC1100 系列、意法半导体的 STM32F0主流MCU系列。
Cortex-M0+ 是在 Cortex-M0 基础上开发的能效极高的处理器,其保留了 Cortex-M 的全部指令集和数据兼容性,以接近 8 位系统的成本开销获取 32 位系统的性能,常见的 Cortex-M0+ 处理器有 NXP 的 LPC1100 系列和意法半导体的STM32G0高性能系列、STM32L0低功耗系列
Cortex-M3 处理器是行业领先的 32 位处理器,具有较高的性能和较低的动态功耗,支持硬件除法、单周期乘法和位字段操作在内的 Thumb-2 指令集,最多可以提供 240 个具有单独优先级、动态重设优先级功能和集成系统时钟的系统中断。常见的型号有NXP 的 LPC1300 系列和 LPC1700 系列;意法半导体的 STM32F1主流MCU、STM32F2高性能系列、STM32L1超低功耗系列
Cortex-M4 是 Cortex-M3 的升级版,将 32 位控制与领先的数字信号处理技术集成来满足需要很高能效级别的市场,主要实际应用型号包括德州仪器(TI)的 TM4C 系列和意法半导体的 STM32F3主流系列、STM32F4、STM32G4高性能系列、STM32L4低功耗系列
Cortex-M7是高性能的内核,其运算效能是Cortex-M4的二倍。其中包括六层的超纯量管线有分支预测,有可选的单精度浮点运算器或双精度.主要实际应用型号包括NXP的RT1050,意法半导体的STM32F7系列、STM32H7系列。
Cortex-A 处理器
 ARM Cortex-A处理器包括 Cortex-A5、Cortex-A7、Cortex-A8、Cortex-A9、Cortex-A12、Cortex-A15、Cortex-A50、Cortex-A72共8个子系列

Cortex-A5 处理器是体积最小、功耗更低的应用型处理器,并且可以带来完整的 *** 体验,可为现有的 ARM926EJ-S 和 ARM1176JZ-S 处理器设计提供高价值的迁移途径。
Cortex-A7 处理器是一种高能效应用处理器,除了低功耗应用外,还支持低成本、全功能入门级智能手机,该处理器与其他 Cortex-A 系列处理器完全兼容并整合了高性能 Cortex-A15 处理器的所有功能,包括虚拟化、大物理地址扩展(LPAE)NEON 高级 SIMD 和 AMBA 4 ACE 一致性。单个 Cortex-A7 处理器的能效是 ARM Cortex-A8 处理器的 5 倍,性能提升了 50%,而尺寸仅为后者的五分之一,支持如今的许多主流智能手机。目前提供 Cortex-A7 的厂商包括德州仪器(TI)、三星(SAMSUNG)、飞思卡尔(Freescale)、博通(Broadcom)、海思半导体(HISILICON)和 LG。
Cortex-A8 处理器基于 ARMv7 架构,支持 1GHz 以上的工作频率,采用了高性能、超标量微架构及用于多媒体和 SIMD 处理的 NEOD 技术,可以满足 300mW 以下运行的移动设备的低功耗要求,目前提供 Cortex-A8 的厂商有德州仪器(TI)、三星(SAMSUNG)、飞思卡尔(Freescale)、博通(Broadcom)和 ST(意法半导体)。
Cortex-A9 处理器是低功耗或散热受限的成本敏感型设备的首选处理器,其支持多核,在用作单核心的时候性能比 Cortex-A8 提升了 50% 以上,其主要用于主流智能手机、平板电脑、多媒体播放器等。
Cortex-A12 是 Cortex-A9 的升级版,专注应用于智能手机和平板电脑,该芯片使用较少。
Cortex-A15 处理器是基于 ARMv7 架构是Cortex-A 系列处理器的最新产品,也是更高性能产品,和其他处理器系列兼容,通常应用于移动计算、高端数码家电、服务器和无线基础架构
Cortex-A50 系列处理器基于 ARMv8 架构, 提供了 A53 和 A57 两种型号的处理器,目前在手机、平板等智能终端设备中得到广泛应用。
Cortex-A72处理器基于ARMv8-A架构,是ARM性能最出色、更先进的处理器。使用设备涵盖高阶的智能手机、中型平板电脑、大型平板电脑

相关内容扩展阅读:

03-04各种处理器的区别,arm,x86 x64都代表啥

  ARM也就是ARM处理器。
  X86表示的是CPU指令集类型。
  x64全称“x86-64”也是CPU的指令集类型。
  ARM处理器是Acorn计算机有限公司面向低预算市场设计的之一款RISC微处理器。更早称作Acorn RISC Machine。ARM处理器本身是32位设计,但也配备16位指令集,一般来讲比等价32位代码节省达35%,却能保留32位系统的所有优势。
  X86是由Intel推出的一种复杂指令集,用于控制芯片的运行的程序,现在X86已经广泛运用到了家用PC领域。
  “x86-64”,有时会简称为“x64”,是64位微处理器架构及其相应指令集的一种,也是Intel x86架构的延伸产品。“x86-64”1999由AMD设计,AMD首次公开64位集以扩充给IA-32,称为x86-64(后来改名为AMD64)。其后也为英特尔所采用,现时英特尔称之为“Intel 64”,在之前曾使用过Clackamas Technology (CT)、IA-32e及EM64T。外界多使用“x86-64”或“x64”去称呼此64位架构,从而保持中立,不偏袒任何厂商。

arm 为什么是 32位微处理器 所以ARM体系结构所支持的更大寻址空间为4GB

所谓32位微处理器,指的是CPU GPRs(General-Purpose Registers,通用寄存器)的数据宽度为32位,32位指令集就是运行32位数据的指令,也就是说处理器一次可以运行32bit数据。

由于32位数据能够包含的地址有2^32=4294967296=4194304K=4096M=4G,所以说更大寻址空间为4GB,但由于指令代码中不可能只包含内存的地址信息,所以一般来说32bit的处理器能够寻得的地址只有不足4GB。

每个数只能定位一个字节,这样才能确保每个字节都节约下来。如果进程数为500,每个进程占用2字节,那么占用的总内存空间则为2*500=1000字节,但如果以4字节作为单位,则占用空间为4(只能以4字节为单位)*500=2000字节,这样就会造成大量数据的冗余,不利于内存的有效使用。

arm处理器乘法运算要几个时钟周期_arm指令长度

要使用低成本的32位处理器,开发人员面临两种选择,基于Cortex-M3内核或者ARM7TDMI内核的处理器。如何做出选择?选择标准又是什么?本文主要介绍了ARMCortex-M3内核微控制器区别于ARM7的一些特点,帮助您快速选择。

1.ARM实现 ***

ARMCortex-M3是一种基于ARM7v架构的最新ARM嵌入式内核,它采用哈佛结构,使用分离的指令和数据总线(冯诺伊曼结构下,数据和指令共用一条总线)。从本质上来说,哈佛结构在物理上更为复杂,但是处理速度明显加快。根据摩尔定理,复杂性并不是一件非常重要的事,而吞吐量的增加却极具价值。ARM对Cortex-M3的定位是:向专业嵌入式市场提供低成本、低功耗的芯片。在成本和功耗方面,Cortex-M3具有相当好的性能,ARM公司认为它特别适用于汽车和无线通信领域。和所有的ARM内核一样,ARM公司将内该设计授权给各个制造商来开发具体的芯片。迄今为止,已经有多家芯片制造商拦耐开始生产基于Cortex-M3内核的微控制器。ARM7TDMI(包括ARM7TDMIS)系列的ARM内核也是面向同一类市场的。这类内核已经存在了十多年之久,并推动了ARM成为处理器内核领域的主导者。众多的制造商出售基于ARM7系列的处理器以及其他配套的系统软件、开发和调试工具。在许多方面,ARM7TDMI都可以称得上是嵌入式领域的实干家。

2.两者差异

除了使用哈佛结构,Cortex-M3还具有其它显著的优点:具有更小的基础内核,价格更低,速度更快。与内核集成在一起的是一些系统外设,如中断控制器、总线矩阵、调试功能模块,而这些外设通常都是由芯片制造商增加的。Cortex-M3还集成了睡眠模式和可选的完整的八区域存储器保护单元。它采用THUMB-2指令集,更大限度降低了汇编器使用率。

3.指令集

ARM7可以使用ARM和Thumb两种指令集,而Cortex-M3只支持最新的Thumb-2指令集。这样设计的优势在于:

免去Thumb和ARM代码的互相切换,对于早期的处理器来说,这种状态切换会降低性能。

Thumb-2指令集的设计是专门面向C语言的,且包括If/Then结构(预测接下来的四条语句的条件执行)、硬件除法以及本地位域操作。

Thumb-2指令集允许用户在C代码层面维护和修改应用程序,C代码部分非常易于重用。

Thumb-2指令集也包含了调用汇编代码的功能:Luminary公司认为没有必要使用任何汇编语言。

综合以上这些优势,新产品的开发将更易于实现,上市时间也大为缩短。

4.中断

Cortex-M3的另一个创新在于嵌套向量中断控制器NVIC(NestedVectorInterruptController)。相对于ARM7使用的外部中断控制器,Cortex-M3内核中集成了中断控制器,芯片制造厂商可以对其进行配置,提供基本的32个物理中断,具有8层优先级,更高可达到240个物理中断和256个中断优先级。此类设计是确定的且具有低延迟性,特别适用于汽车应用。

NVIC使用的是基于堆栈的异常模型。在处理中断时,将程序计数器,程序状态寄存器,链接寄存器和通用寄存器压入堆栈,中断处理完成后,在恢复这些寄存器。堆栈处理是由硬件完成的,无需用汇编岩衡纯语言创建中断服务程序的堆栈操作。中断嵌套是可以是实现的。中断可以改为使用比之前服务程序更高的优先级,而且可以在运行时改变优先级状态。

使用末尾连锁(tail-chaining)连续中断技术只需消耗三个时钟周期,相比于32个时钟周期的连续压、出堆栈,大大降低了延迟,提高了性能。

如果在更高优先级的中断到来之前,NVIC已经压堆栈了,那就只需要获取一个新的向量地址,就可以为更高优先级的中断服务了。同样的,NVIC不会用出堆栈的操作来服务新的中断。这种做法是完全确定的且具有低延迟性。

5.睡眠

Cortex-M3的电源管理方案通过NVIC支持SleepNow,SleeponExit,(退出更低优先级的ISR)和SLEEPDEEPmodes这三种睡眠模式。

为了产生定期的中断时间间隔,NVIC还集成了系统节拍计时器,这个计时器也可以作为RTOS和调度任务的心脏。这种做法与先前的ARM架构的不同之处就在于不需要外部时钟。

6.存储器保护单元

存储器保护单元是一个可选组建。选用了这个选项,内存区域就粗咐可以与应用程序特定进程按照其他进程所定义的规则联系在一起。例如,一些内存可以完全被其他进程阻止,而另外一部分内存能对某些进程表现为只读。还可以禁止进程进入存储器区域。可靠性,特别是实时性因此得到重大改进。

7.调试

对Cortex-M3处理器系统进行调试和追踪是通过调试访问端口(DebugAessPort)来实现的。调试访问端口可以是一个2针的串行调试端口(SerialWireDebugPort)或者串行JTAG调试端口(SerialWireJTAGDebugPort)。通过Flash片、断点单元、数据观察点、跟踪单元,以及可选的嵌入式跟踪宏单元(EmbeddedTraceMacrocell)和指令跟踪宏单元(TraceMacrocell)等一系列功能相结合,在内核部分就可以采用多种类型的调试 *** 及监控函数。例如,可以设置断点、观察点、定义缺省条件或执行调试请求、监控停止操作或继续操作。所有的这些功能在ARM架构的产品中已经实现,只是Cortex-M3将这些功能整合起来,方便开发人员使用。

8.应用范围

虽然ARM7内核并没有像Cortex系列那样集成很多外设,但是大量的基于ARM7的器件,从通用MCU,到

面向应用的MCU、SOC甚至是Actel公司基于ARM7内核的FPGA,都拥有更为众多的外围设备。大约有150种MCU是基于ARM7内核的(根据不同的统计 *** ,这个数字可能会更高)。

你会发现ARM7都可以实现几乎所有的嵌入式应用,或采用定制的方式来满足需求。基于标准内核,芯片厂商可以加入不同类型、大小的存储器和其他外围设备,比如串行接口、总线控制器、存储器控制器和图形单元,并针对工业、汽车或者其他要求苛刻的领域,使用不同的芯片封装,提供不同温度范围的芯片版本。芯片厂商也可能绑定特定的软件,比如TCP/IP协议栈或面向特定应用的软件。

例如,公司的STR7产品线有三个主要系列共45个成员,具有不同的封装和存储器。每一个系列都针对特定的应用领域,具有不同外设 *** 。比如STR730家族是专为工业和汽车应用设计的,因此具有可扩展的温度范围,包括多个I/O口和3个CAN总线接口。STR710则是面向于消费市场以及高端的工业应用,它具有多个通信接口,比如USB、CAN、ISO7816以及4个UART,还有大容量的存储器和一个外部存储器接口。

芯片厂商也可以选择利于开发人员开发产品的措施,比如采用ARM的嵌入式跟踪宏单元ETM(Embedded

TraceMacrocell),并提供开发和调试工具。Luminary、这两家公司已经有基于Cortex-M3的芯片,其他公司如NXP、Atmel也宣布生产该类产品。

9.配套工具

ARM7应用已经非常普及,它已经有非常多第三方的开发和调试工具支持。在ARM的网站上有超过130家工具公司名称列表。

大多数厂商提供了基本的开发板,并提供下载程序的接口、调试工具以及外部设备的驱动,包括LED灯的显示状态或者屏幕上的单行显示。通常,开发套件包括编译器、一些调试软件以及开发板。更为高级的套件包括第三方的集成开发环境(IDE),IDE中包含编译器、链接器、调试器、编辑器和其他工具,也可能包括仿真硬件,比如说JTAG仿真器。内电路仿真器(ICE)是最早的也是最有用的调试工具形式之一,很多厂商都在ARM7上提供了这一接口。

软件开发工具范围很广:从建模到可视化设计,到编译器。现在很多的产品也用到实时操作系统(RTOS)和中间件,以加速开发进程、降低开发难度。另外,还有一个非常重要的因素,很多的开发人员对ARM7的开发经验非常丰富。

虽然现在已经有新兴的Cortex-M3工具,但显然还是有一定的差距。不过,Cortex-M3的集成调试性能使调试变得简单且有效,且无需用到内电路仿真器ICE。

10.决策

那么,你应该如何做出何种选择呢?如果成本是最主要考虑因素,您应该选择Cortex-M3;如果在低成本的情况下寻求更好的性能和改进功耗,您更好考虑选用Cortex-M3;特别是如果你的应用是汽车和无线领域,更好也采用Cortex-M3,这正是Coretex-M3的主要定位市场。由于Cortex-M3内核中的多种集成元素以及采用Thumb-2指令集,其开发和调试比ARM7TDMI要简单快捷。

然而,由于重定义ARM7TDMI的应用不是一件困难的事,特别是在使用了RTOS的情况下。保守者可能会沿用ARM7TDMI内核的芯片,并避免使用那些会使重定义变得复杂的功能。

IARSystems公司是最早做C编译器的厂商,提供一系列ARM开发工具,包括IARvisualSTATE建模工具、IAREmbeddedWorkbenchforARM集成开发环境、IARPowerPac实时操作系统和中间件、J-Link硬件仿真工具以及开发套件。不管用户的选择是ARM7还是Cortex-M3,IAR都会让开发变得简单而有趣。